
DARTS - Multibody Modeling,
Simulation and Analysis Software

Abhinandan Jain(B)

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109, USA

jain@jpl.nasa.gov

Abstract. This paper describes the Dynamics Algorithms for Real-
Time Simulation (DARTS) software for multibody dynamics modeling,
analysis and simulation. DARTS is in use for closed-loop simulation for
aerospace, ground vehicle, robotics applications and large, multi-scale
molecular dynamics applications. DARTS is designed for high-fidelity
multibody dynamics, fast computational speed, to handle run-time con-
figuration changes, and to provide a broad family of computational
algorithms for analysis and model based control. This paper describes
DARTS capabilities, novel aspects of its architecture and design, and
application examples.

1 Introduction

This paper describes the current generation of the Dynamics Algorithms for Real-
Time Simulation (DARTS) software for multibody dynamics modeling, analy-
sis and simulation [1]. DARTS adopts a minimal coordinates approach similar to
the SimBody [2] and RBDL [3] tools for solving the equations of motion for time
domain simulations. However the goals of DARTS are broader. It is designed to
handle rigid/flexible multibody dynamics, arbitrary system topologies, smooth
and non-smooth dynamics, run-time configuration changes, and also provide a full
complement of computational algorithms needed for dynamics analysis and model
based control with fast computational performance. While the DARTS object-
oriented implementation is in C++, a rich Python interface is available for all
the classes and methods in the system. This allows users full flexibility in defin-
ing and configuring the model as desired and to even modify the model topology
and properties during run-time. DARTS is in use for the dynamics simulation for
aerospace, ground vehicle, robotics and multi-scale molecular dynamics applica-
tions [4]. Section 2 describes the dynamics formulation approach, Sect. 3 the soft-
ware architecture andkey features, andSect. 4 describes application examples.Due
to space limitations, this paper limits itself to an overview of key aspects ofDARTS,
with details to follow in an expanded future publication.

c� Springer Nature Switzerland AG 2020

A. Kecskeméthy and F. Geu Flores (Eds.): ECCOMAS 2019, COMPUTMETHODS 53, pp. 433–441, 2020.

https://doi.org/10.1007/978-3-030-23132-3_52



434 A. Jain

2 Structure-Based Dynamics

DARTS algorithms are based on minimal coordinates dynamics formulations.
Minimal coordinate dynamics reduce, if not avoid, the need for explicit con-
straints, DAE integration methods and constraint stabilization techniques.
DARTS is based on the Spatial Operator Algebra (SOA) [5] methodology which
uses mathematical operator techniques to exploit the structure of minimal coor-
dinate models for analysis and to develop low-cost recursive computational algo-
rithms. Using SOA, analytical operator expressions can be derived for the factor-
ization of the mass matrix and its inverse for arbitrary tree multibody systems.
These expressions form the basis for a broad range of low-cost computational
algorithms including the well known, O(N) recursive methods for the low-cost
solution of the equations of motion for tree-topology systems [5,6]. These algo-
rithms are structure-based and consist of scatter/gather recursions that proceed
across the bodies in the system topology. This property allows DARTS to eas-
ily handle run-time structural changes in the system topology such as from
the attachment/detachment and addition/deletion of bodies. Such structural
changes are common in aerospace separation and deployment scenarios, during
robotics manipulation and in model coarsening strategies for large-scale molecu-
lar dynamics simulations. The algorithms accommodate such changes with recur-
sions simply following the new system topology. DARTS supports general multi-
body system models including:

Serial/tree rigid/flexible systems: DARTS includes O(N) articulated-body
inertia (ABI) recursive method for solving the equations of motion of arbi-
trary tree-topology multibody systems [5,7]. The computational cost of these
methods scales linearly with the number of bodies. SOA shows that these
structure-based recursive methods for rigid multibody systems directly extend
to flexible bodies as well. While some low level computational details change,
the overall forward dynamics algorithm structure remains the same. The algo-
rithm implemented within DARTS support rigid and flexible body dynamics.
Assumed mode, small deformation models are used for flexible bodies.

Closed-chain topology systems: Recursive methods are not directly usable
for system topologies that include loops. One approach is to introduce loop-
cuts to obtain a spanning tree. The low-cost O(N) recursive method are used
for the spanning tree dynamics, followed by additional steps to correct the
solution for the loop-cuts. Within DARTS, this tree-augmented (TA) method
also uses a SOA-based low-cost method for computing the operational space
inertias needed for the loop-cuts during the correction phase [8]. An alterna-
tive to the non-minimal coordinate TA approach is the SOA-based constraint
embedding (CE) technique for closed-loop systems. The CE method trans-
forms the graph-topology systems into a minimal coordinate tree-topology
system using compound, variable-geometry bodies. Unlike projection meth-
ods, the transformation is structure-preserving so that the O(N) ABI recur-
sive methods and ODE integrators can be used even for closed-loop systems.
Both the CE and TA dynamics solution methods are available within DARTS.



DARTS - Multibody Modeling, Simulation and Analysis Software 435

Contact/collision dynamics: For non-smooth dynamics involving contact and
collisions, DARTS includes support for penalty-based methods. Also available
are impulsive complementarity based solution methods that exploit minimal
coordinate to reduce the size of the complementarity problem to the number
of loop-cut and unilateral contact constraints [9]. Both linear and non-linear
complementarity solution algorithms are available in DARTS [10].

3 Architectural Features

Frames layer: The set of frames of interest within a simulation can easily
number in the hundreds or more. DARTS includes general purpose frame
transforms layer that supports the on demand computation of relative pose,
velocity and accelerations for any pair of frames in the system. This layer
removes the need for special purpose methods for specific frame pair proper-
ties. A notable feature is that the values are computed only when requested
to avoid the cost of keeping the frames tree fully updated. Transform values
are cached and reused, and recomputed only when they are no longer current.
The frames layer allows reattachment, as well as the creation and deletion of
frames at run-time.

Multibody elements: The key elements of a multibody model are the set of
bodies, connector hinges and nodes (physical points of interest on bodies).
Within DARTS, each of these entities are distinct C++ objects with associ-
ated data and methods. Body and node classes are derived from the frame
base class. In addition to supporting a full set of hinge types, a custom hinge
type allows users to go beyond the pre-defined types and create hinges consist-
ing of an arbitrary sequence of articulation degrees of freedom. Bilateral loop
constraints are defined via a hinge that specifies the permissible constrained
motion.

Structural changes: DARTS allows run-time structural changes to the system
topology such as from the detachment and reattachment of bodies. Also bod-
ies can be deleted and added on the fly. These features are needed for robotics
manipulation scenarios, and for events such as heat-shield separation and
deployment in aerospace applications. The structure-based SOA algorithms
continue to work by simply switching to the new multibody system topology.

Subgraphs: While dynamics computations are usually for the full multibody
system, the SOA structure-based algorithms can be limited to connected sub-
graphs of bodies within the system. Important examples of such subgraphs are
individual vehicles and robot limbs arms. Within DARTS, the full multibody
system is itself a subgraph containing all the bodies. Virtually all of the com-
putational algorithms (including forward dynamics) can be invoked on just
the bodies in a subgraph - while ignoring all external bodies. Maintaining the
distinction between the multibody model and the computational subgraph
has other important benefits. The CE method for closed-loop systems relies
on a transformation of the multibody graph into a tree topology system.
Within DARTS, the transformed graph is just another subgraph, and using



436 A. Jain

the CE method consists of simply invoking the forward dynamics algorithm
on this transformed subgraph.

Python interface: DARTS uses the open-source SWIG tool [11] to auto-
generate a comprehensive Python interface for all the C++ classes and their
methods. The Python interface allows users to conveniently set up simula-
tions using Python scripts without losing the speed benefits from the compiled
C++ layer. The comprehensive Python interface gives users a high degree of
flexibility in tailoring the simulation to individual simulation needs and inter-
acting with it during run-time.

Dynamics solvers and integrators: As discussed above, DARTS supports
multiple methods for solving the equations of motion. While the O(N) ABI
algorithm can be used for tree-topology forward dynamics, the TA algorithm
requires a different procedure since it uses non-minimal coordinates. Only
integration schemes compatible with the selected solution method can be
used. Thus while a minimal coordinates solution method can be used with
(any) ODE integrator, a non-minimal coordinates method requires a DAE
solver or a Baumgarte like constraint error management scheme. DARTS
includes solver C++ classes to support the pairing of a solution method with
a compatible numerical integrator.

Visualization: DARTS includes 3D graphics visualization of the multibody
model. Even without any graphics data, there is a built in capability to gen-
erate a stick figure 3D graphics model that can be animated and articulated.
This is useful for debugging and adjusting the model during the early model
definition stages. In addition, primitive geometry shapes and CAD parts can
be attached to nodes on the bodies to provide a richer graphical representa-
tion. Different graphics engines (e.g. Ogre3D, Blender) can be used to render
the graphics.

DARTS also includes features such as built in nonlinear solvers for solving
loop constraints and state initialization, methods for linearizing the dynamics
model for use in control design and analysis, and GUIs for browsing, adjusting
and interactively animating the model.

3.1 Computational Algorithms and Features

In addition to the forward dynamics solution methods described above, DARTS
includes several other algorithms and features with key ones listed below:

Jacobians: The Jacobian matrix is commonly used in robotics. It maps general-
ized velocities into the spatial velocity of frames attached to the mechanism.
DARTS provides methods to compute the Jacobian matrix map from any
subset of degrees of freedom to any set of frames attached to the multibody
system.

Hybrid dynamics: The forward dynamics problem solves for the general-
ized accelerations resulting from specified generalized forces on the system.
DARTS supports a more general O(N) recursive hybrid dynamics algorithm



DARTS - Multibody Modeling, Simulation and Analysis Software 437

where the inputs for any subset of the degrees of freedom can instead be
generalized accelerations, and the algorithm will compute the unknown gen-
eralized forces for these degrees of freedom. Specifying a degree of freedom
to be of prescribed type reverses the input/output computation for a degree
of freedom. The hybrid algorithm reduces to the standard O(N) ABI forward
dynamics algorithm when none of the degrees of freedom are prescribed, and
to the O(N) Newton-Euler inverse dynamics algorithm when all degrees of
freedom are prescribed. The prescribed property of a degree of freedom can
be changed on the fly.

Operational space inertia: For a body node, the operational space inertia
(OSC) matrix represents the mass matrix of the system reflected to the node.
This is an important quantity for task-space and whole-body motion control
in robotics, as well for the TA closed-chain dynamics solution method. The
SOA algorithms provide a low-cost recursive algorithm for computing OSC
matrices [5,12], and DARTS uses it for computing the OSC for any set of
nodes specified by the user.

Composite body inertias, kinetic energy, momentum: DARTS includes
methods for computing the configuration dependent composite body, i.e. com-
bined spatial inertia, momentum and kinetic energy properties for any sub-set
of bodies in the system. These methods are useful for computing the proper-
ties of individual vehicles, robotic arms etc.

CM frame: In certain applications, it is important to keep track of the center
of mass (CM) location of a subgraph. DARTS automatically creates a CM
frame for each subgraph that tracks the CM location of the bodies as the con-
figuration evolves with time. This allows users to use the standard frame level
transform methods to easily track the location of the CM for any subgraph.

Interbody forces: The recursive O(N) ABI forward dynamics algorithms do
not require, nor compute, interbody spatial forces. However there are times
when these force values are needed. The SOA algorithm provides an inexpen-
sive expression for computing this value for any pair of connected bodies [13]
that is implemented within DARTS.

Pruning bodies: The bodies within a complex multibody model typically
match the structure of the mass property and kinematics input deck for the
system. This can result in more bodies than are essential to the dynamics
computations, and add to the computational cost. DARTS allows users to
prune the bodies in a multibody model by freezing and coalescing rigidly
connected pairs of bodies.

DCA algorithm: The divide-and-conquer algorithm (DCA) is an alternative
forward dynamics methods that is amenable to parallelization [14]. DARTS
includes an implementation of this method for use with large multibody mod-
els (e.g. molecular dynamics).

Linearization: Since multibody dynamics models are inherently nonlinear, lin-
earized dynamics models are often required for control system design and
analysis. DARTS provides methods for automatically computing and export-
ing linearized models for multibody models.



438 A. Jain

Statistical dynamics: Statistical properties play a key role in molecular
dynamics simulations. The use of multibody methods for such simulations
requires generalizations of the classical equipartition principle to systems with
constraints in order to distribute the thermal energy evenly across the coupled
system degrees of freedom. DARTS implements SOA techniques for such a
generalized equipartition principle [15]. Also, it is known that the use of multi-
body methods introduces biases in the statistical properties which can be
overcome with the additional use of a Fixman potential. DARTS implements
SOA methods for incorporating this potential within molecular dynamics
simulations [16].

4 Applications

Engineering simulations include vehicle dynamics together with models for sen-
sor/actuator devices, the environment and closing the loop with control software.
For such simulation applications, DARTS serves as the vehicle dynamics module
within the DARTS Shell (Dshell) component-based simulation framework [17].
Key application areas for DARTS and Dshell are described below.
Aerospace: The DSENDS tool is an adaptation of the DARTS/Dshell toolkit
for spacecraft flight dynamics which uses component models for aerodynamics,
engines, thrusters, gravity, fuel consumption, ephemerides etc. DSENDS is in
use for closed-loop guidance and control for orbiters, landers and launch vehicle
simulations for NASA missions such as Cassini, Mars Pathfinder, Mars Science
Laboratory, Phoenix, InSight, Mars 2020, Space Launch System [18]. A recent
application has been for rotorcraft simulation for the upcoming NASA Mars
Helicopter technology demonstration mission [19].
Ground Vehicles: The ROAMS tool is an adaptation of the DARTS/Dshell
toolkit for the simulation of autonomous ground vehicles such as NASA plan-
etary rovers [20]. ROAMS includes models for vehicle suspensions, wheel/soil
interaction, autonomy sensors such as cameras and lidars, and motion control
software. ROAMS has also been used for simulating terrestrial vehicles such as
the HMMWV, MRZR4 and other robot mobility platforms [21]. The constraint
embedding methods have been especially useful for modeling the dynamics of
the double wishbone and trailing arm suspensions in these vehicles.
Robotics and Embedded Use: DARTS has been used for simulating robotics
systems such as manipulators and legged/humanoid mobile robots. Some of
these applications use the contact/collision dynamics capabilities within DARTS.
Another application area within robotics is its use as a modeling layer embed-
ded within the robot control software. The large variety of algorithms supported
by the SOA framework makes it especially suitable for addressing a broad and
diverse set of model-based computations using low-cost recursive methods. This
adaptation of DARTS, called RoboDarts, serves as a fast, cross-cutting versa-
tile layer that computes model-based data for the control, execution, percep-
tion, estimation and planning modules within robot control software [22,23].
The queries can range from basic frame to frame pose transforms, gravity com-
pensation computations, load balancing for multi-arm manipulation, trajectory



DARTS - Multibody Modeling, Simulation and Analysis Software 439

and grasp planning, and feed forward control inputs for gait management. The
structure-based algorithms are also able to easily accommodate the time-varying
configuration and constraints that are common in robotic tasks.
Computational Workbench: PyCraft is a multibody dynamics analysis com-
putational workbench based on DARTS [24]. The goal of PyCraft is to provide
an interactive environment for the numerical evaluation of operators and oper-
ator expressions from SOA theory. With DARTS providing the modeling layer,
PyCraft implements C++ operator classes for all the key operators in SOA.
Overloaded arithmetic operations for these operators are available for evaluating
mathematical operator expressions from the command line. Thus for instance,
operator expressions for the mass matrix and mass matrix inverse from SOA
can be evaluated directly for any multibody model loaded into DARTS. The
PyCraft computational workbench enables the easy evaluation and testing of
results from SOA mathematical analysis. PyCraft supports the full range of
computations provided by SOA including advanced techniques for computing
sensitivities of operators and the mass matrix.
Molecular Dynamics: Another research application area for DARTS has been
that of molecular dynamics simulations of bio-molecular systems. Conventional
atom-level simulation methods suffer from small time steps dictated by the stiff
bond stretching degrees of freedom. By eliminating these degrees of freedom,
DARTS enables the use of larger simulation time steps. The GNEIMO [25]
methods and software make use of DARTS for these applications and include
multi-scale methods that significantly increase the simulation duration and sam-
pling for these very large dynamical systems. Segments of the molecular model
can be frozen and thawed on the fly to manage the coarseness of the model
dynamics. The emphasis of molecular dynamics simulation is usually on statisti-
cal properties. Statistically correct initialization of the system state is based on
an extension of the equipartition principle [15]. Furthermore, GNEIMO also sup-
ports the use of the Fixman potential for correcting statistical biases introduced
by the internal constraints [16].

Acknowledgement. The research described in this paper was performed at the Jet
Propulsion Laboratory (JPL), California Institute of Technology, under a contract with
the National Aeronautics and Space Administration1.

References

1. Jain, A., Man, G.K.: Real–time simulation of the Cassini spacecraft using DARTS:
functional capabilities and the spatial algebra algorithm. In: 5th Annual Conference
on Aerospace Computational Control. Jet Propulsion Laboratory, Pasadena, CA,
August 1992

2. Sherman, M.A., Seth, A., Delp, S.L.: Simbody: multibody dynamics for biomedical
research. Procedia IUTAM 2, 241–261 (2011)

3. Felis, M.L.: RBDL: an efficient rigid-body dynamics library using recursive algo-
rithms. Autonomous Robots, 1–17 (2016)

1 c�2019 California Institute of Technology. Government sponsorship acknowledged.



440 A. Jain

4. Dynamics and Real-Time Simulation (DARTS) Lab (2019). http://dartslab.jpl.
nasa.gov/

5. Jain, A.: Robot and Multibody Dynamics: Analysis and Algorithms. Springer,
Berlin (2011)

6. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York (2008)
7. Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J.

Guidance Control Dyn. 14(3), 531–542 (1991)
8. Jain, A., Crean, C., Kuo, C., Quadrelli, M.B.: Efficient constraint modeling for

closed-chain dynamics. In: The 2nd Joint International Conference on Multibody
System Dynamics, Stuttgart, Germany (2012)

9. Jain, A.: Contact dynamics formulation using minimal coordinates. In: Terze, Z.
(ed.) Multibody Dynamics, pp. 93–121. Springer (2014)

10. Mylapilli, H., Jain, A.: Evaluation of complementarity techniques for minimal coor-
dinate contact dynamics. In: Proceedings of the ASME Design Engineering Tech-
nical Conference, vol. 6 (2014)

11. Simplified Wrapper and Interface Generator (SWIG) (2019). http://swig.org/
12. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: Spatial operator algebra for multi-

body system dynamics. J. Astronaut. Sci. 40(1), 27–50 (1992)
13. Jain, A.: Computing inter-body constraint forces in recursive multibody dynam-

ics. In: The 5th Joint International Conference on Multibody System Dynamics,
Lisboa, Portugal (2018)

14. Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel
O(log(n)) calculation of rigid-body dynamics. Part 1: basic algorithm. Int. J.
Robot. Res. 18(9), 867–875 (1999)

15. Jain, A., Park, I.-H., Vaidehi, N.: Equipartition principle for internal coordinate
molecular dynamics. J. Chem. Theory Comput. 8(8), 2581–2587 (2012)

16. Jain, A., Kandel, S., Wagner, J., Larsen, A.B., Vaidehi, N.: Fixman compensating
potential for general branched molecules. J. Chem. Phys. 139(24), 244103 (2013)

17. Cameron, J.M., Balaram, J., Jain, A., Kuo, C., Lim, C., Myint, S.: Next generation
simulation framework for robotic and human space missions. In: AIAA SPACE
Conference and Exposition 2012 (2012)

18. Cameron, J.M., et al.: DSENDS: multi-mission flight dynamics simulator for NASA
missions. In: AIAA SPACE 2016, Long Beach, CA (2016)

19. Grip, H., et al.: Flight control system for NASA’s mars Helicopter. In: Proceedings
of the AIAA Science and Technology Forum and Exposition (2018)

20. Jain, A., Balaram, J., Cameron, J.M., Guineau, J., Lim, C., Pomerantz, M.,
Sohl, G.: Recent developments in the ROAMS planetary rover simulation envi-
ronment. In: IEEE 2004 Aerospace Conference, Big Sky, Montana (2004)

21. Jain, A., Guineau, J., Lim, C., Lincoln, W., Pomerantz, M., Sohl, G., Steele, R.:
Roams: planetary surface rover simulation environment. In: International Sym-
posium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS
2003), Nara, Japan, May 2003

22. Jain, A.: Structure based modeling and computational architecture for robotic
systems. In: 2013 IEEE International Conference on Robotics and Automation
(2013)


